SAND2016-9292C

### Exceptional service in the national interest





## Anthropogenic influences on groundwater in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico, USA

### Matthew A. Thomas<sup>1</sup>, Kristopher L. Kuhlman<sup>2</sup>, and Anderson L. Ward<sup>3</sup>

<sup>1</sup>Sandia National Laboratories, 4100 National Parks Highway, Building A, Mail Stop 1395, Carlsbad, New Mexico, 88220-9006 <sup>2</sup>Sandia National Laboratories, PO Box 5800, Mail Stop 0747, Albuquerque, New Mexico, 87185-0747 <sup>3</sup>United States Department of Energy, 4021 National Parks Highway, Carlsbad, New Mexico, 88220-9082



Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP





U.S. Department of Energy

# Culebra Dolomite (Rustler Fm.)

WEST



EAST

#### Powers and Holt (1999)







Zones Prograde East Due to Progressive Unloading/Erosion and Dissolution

Beauhiem and Holt (1990)

# Groundwater monitoring network

Sandia National Laboratories

- Culebra is the most transmissive and laterally extensive saturated zone above the Salado.
- Flow is ~N-S inside Land Withdrawal Boundary.
- Long-term, high-frequency monitoring network
  - Began in 2003
  - 40 Culebra wells
  - Recording fluid pressure
  - Collected at 15-minute intervals, downloaded monthly



## Pressure transducer data





5



- Within a preliminary, simulation-based framework:
  - Estimate a pumping rate for the well.
  - Simulate drawdown associated with the pumping.
  - Simulate and compare advective particle travel paths/times for cases with and without pumping.
  - Consider what the pumping tells us about the system in light of how it is has traditionally been modeled.
    - 100 base-case (calibrated) realizations
    - 2D, steady state, heterogeneous, and anisotropic



## Code: PFLOTRAN

 Ensemble-averaged 2D realization; constant head and no-flow boundaries; initial conditions from steady-state simulation; sink term (pumping well); nine-month period



# Culebra flow modeling, targets

- Iterate for sink term that minimizes Modeling Efficiency (EF).
- Two observation groups; strong vs. subdued response
- Best-fit pumping rate: 1.8E-03 m<sup>3</sup>s<sup>-1</sup> (28.5 gpm)



Sandia

# Culebra flow modeling, drawdown





- Qualitative similarities between observed and simulated drawdown field
  - North-south lobe
  - Drawdown opens to the south





- Codes: PFLOTRAN, DTRKMF
- PFLOTRAN:
  - Apply best-fit sink term from ensemble-averaged model to the 100 realizations that comprise the ensemble-average model.
    - Constant head and no-flow boundaries; initial conditions from steadystate simulation; sink term (pumping well); nine-month period
- DTRKMF:
  - Calculate conservative (i.e., non-dispersive and non-reactive) particle track each realization.

## Culebra particle tracking, results







## Findings

- The Culebra-based pumping in the vicinity of the WIPP halves "snapshot based" estimates of particle travel time across the site.
- The effects (i.e., change in travel time and path) associated with the pumping period are unimportant relative to the WIPP performance period.
- Food for thought
  - What did we learn about the system?
  - What could transient forcings looking like in the future?
  - What is the best way to increase confidence in a transient simulation conducted on the geologic timescale when it is calibrated with observations made on the human timescale?



Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. **SAND2016-6381A**